抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称作虚拟机的类加载机制。
与那些在编译时需要进行连接的语言不同,在Java语言里面,类型的加载、连接和初始化过程都是在程序运行期间完成的,这种策略让Java语言进行提前编译会面临额外的困难,也会让类加载时稍微增加一些性能开销,但是却为Java应用提供了极高的扩展性和灵活性,Java天生可以动态扩展的语言特性就是依赖运行期动态加载和动态连接这个特点实现的。

类加载的时机

一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载、验证、准备、解析、初始化、使用和卸载七个阶段,其中验证、准备、解析三个部分统称为连接。

加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类型的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(动态绑定或晚期绑定)。

关于在什么情况下需要开始类加载过程的第一个阶段 “加载”,《Java虚拟机规范》中并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把握。但是对于初始化阶段,则是严格规定了有且只有六种情况必须立即对类进行 “初始化”:

  1. 遇到 new、getstatic、putstatic 或 invokestatic 这四条字节码指令时,如果类型没有进行过初始化,则需要先触发其初始化阶段。能够生成这四条指令的典型Java代码场景有:
    • 使用 new 关键字实例化对象的时候
    • 读取或设置一个类型的静态字段(被 final 修饰、已在编译期把结果放入常量池的静态字段除外)的时候
    • 调用一个类型的静态方法的时候
  2. 使用 java.lang.reflect 包的方法对类型进行反射调用的时候,如果类型没有进行过初始化,则需要先触发其初始化。
  3. 当初始化类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
  4. 当虚拟机启动时,用户需要指定一个要执行的主类(包含 main() 方法的那个类),虚拟机会先初始化这个类。
  5. 当使用JDK 7新加入的动态语言支持时,如果一个 java.lang.invoke.MethodHandle 实例最后的解析结果为 REF_getStatic、REF_putStatic、REF_invokeStatic、REF_newInvokeSpecial 四种类型的方法句柄,并且这个方法句柄对应的类没有进行过初始化,则需要先触发其初始化。
  6. 当一个接口中定义了JDK 8新加入的默认方法(被 default 关键字修饰的接口方法)时,如果有这个接口的实现类发生了初始化,那该接口要在之前被初始化。

对于这六种会触发类型进行初始化的场景,《Java虚拟机规范》中使用了一个非常强烈的限定语—— “有且只有”,这六种场景中的行为称为对一个类型进行主动引用。除此之外,所有引用类型的方式都不会触发初始化,称为被动引用。下面举三个例子来说明何为被动引用。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* 被动使用类字段演示一:
* 通过子类引用父类的静态字段,不会导致子类初始化
*/
class SuperClass {
static {
System.out.println("SuperClass init");
}

public static int value = 123;
}

class SubClass extends SuperClass {
static {
System.out.println("SubClass init");
}
}

/**
* 非主动使用类字段演示
*/
public class NotInitialization {
public static void main(String[] args) {
System.out.println(SubClass.value);
}
}

对于静态字段,只有直接定义这个字段的类才会被初始化,因此通过其子类来引用父类中定义的静态字段,只会触发父类的初始化而不会触发子类的初始化。至于是否要触发子类的加载和验证阶段,在《Java虚拟机规范》中并未明确规定,所以这点取决于虚拟机的具体实现。

1
2
3
4
5
6
7
8
9
/**
* 被动使用类字段演示二:
* 通过数组定义来引用类,不会触发此类的初始化
*/
class NotInitialization {
public static void main(String[] args) {
SuperClass[] sca = new SuperClass[10];
}
}

这段代码运行之后没有输出 “SuperClass init”,说明并没有触发类 org.test.SuperClass 的初始化阶段。但是这段代码里面触发了另一个名为 “[Lorg.test.SuperClass” 的类的初始化阶段,对于用户代码来说,这并不是一个合法的类型名称,它是个由虚拟机自动生成的、直接继承于 java.lang.Object 的子类,创建动作由字节码指令 anewarray 触发。

这个类代表了一个元素类型为 org.test.SuperClass 的一维数组,数组中应用的属性和方法(用户可直接使用的只有被修饰为public的length属性和clone()方法)都实现在这个类里。Java语言中对数组的访问要比 C/C++ 相对安全,很大程度上就是因为这个类包装了数组元素的访问,而 C/C++ 中则是直接翻译为对数组指针的移动。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* 被动使用类字段演示三:
* 常量在编译阶段会存入调用类的常量池中,本质上没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化
*/
class ConstClass {
static {
System.out.println("ConstClass init");
}

public static final String HELLO = "Hello";
}

/**
* 非主动使用类字段演示
*/
class NotInitialization {
public static void main(String[] args) {
System.out.println(ConstClass.HELLO);
}
}

虽然在Java源码中确实引用了ConstClass类的常量 HELLO,但其实在编译阶段通过常量传播优化,已经将此常量的值 “Hello” 直接存储在 NotInitialization 类的常量池中,以后 NotInitialization 对常量 ConstClass.HELLO 的引用,实际都被转化为 NotInitialization 类对自身常量池的引用了。

接口的加载过程与类加载过程稍有不同,针对接口需要做一些特殊说明:接口也有初始化过程,这点与类是一致的,上面的代码都是用静态语句块 “static {}” 来输出初始化信息的,而接口中不能使用 “static {}” 语句块,但编译器仍然会为接口生成 “<clinit>()” 类构造器,用于初始化接口中所定义的成员变量。接口与类真正有所区别的是前面讲述的六种 “有且仅有” 需要触发初始化场景的第三种:当一个类在初始化时,要求其父类全部都已经初始化过了,但是一个接口在初始化时,并不要求其父接口全部都完成了初始化,只有在真正使用到父接口的时候(如引用接口中定义的常量)才会初始化。

类加载的过程

加载

“加载” 阶段是整个 “类加载” 过程中的一个阶段。在加载阶段,Java虚拟机需要完成以下三件事情:

  1. 通过一个类的全限定名来获取定义此类的二进制字节流
  2. 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构
  3. 在内存中生成一个代表这个类的 java.lang.Class 对象,作为方法区这个类的各种数据的访问入口

《Java虚拟机规范》对这三点要求其实并不是特别具体,留给虚拟机实现与Java应用的灵活度都是相当大的。例如 “通过一个类的全限定名来获取定义此类的二进制字节流” 这条规则,它并没有指明二进制字节流必须得从某个Class文件中获取,确切的说是根本没有指明要从哪里获取、如何获取。例如:

  • 从 ZIP 压缩包中读取,这很常见,最终成为日后 JAR、EAR、WAR 格式的基础。
  • 从网络中获取,这种场景最典型的应用就是Web Applet。
  • 运行时计算生成,这种场景使用得最多的就是动态代理技术,在 java.lang.reflect.Proxy 中,就是用了 ProxyGenerator.generateProxyClass() 来为特定接口生成形式为 “*$Proxy” 的代理类的二进制字节流
  • 由其他文件生成,典型场景是JSP应用,由JSP文件生成对应的Class文件
  • 从数据库中读取,这种场景相对少见些,例如有些中间件服务器(如 SAP Netweaver)可以选择把程序安装到数据库中来完成程序代码在集群间的分发。
  • 可以从加密文件中获取,这是典型的防Class文件被反编译的保护措施,通过加载时解密Class文件来保障程序运行逻辑不被窥探

相对于类加载过程的其他阶段,非数组类型的加载阶段(准确的说,是加载阶段中获取类的二进制字节流的动作)是开发人员可控性最强的阶段。加载阶段既可以使用 Java虚拟机里内置的启动类加载器来完成,也可以由用户自定义的类加载器去完成,开发人员通过定义自己的类加载器去控制字节流的获取方式(重写一个类加载器的 findClass() 或 loadClass() 方法),实现根据自己的想法来赋予应用程序获取运行代码的动态性。

对于数组类而言,情况有所不同,数组类本身不通过类加载器创建,它是由Java虚拟机直接在内存中动态构造出来的。但数组类与类加载器仍然有很密切的关系,因为数组类的元素类型(指的是数组去掉所有维度的类型)最终还是要靠类加载器来完成加载,一个数组类(下面简称为 C)创建过程遵循以下规则:

  • 如果数组的组件类型(指的是数组去掉一个维度的类型,注意和前面的元素类型区分开来)是引用类型,那就递归采用本节中定义的加载过程去加载这个组件类型,数组 C 将被标识在加载该组件类型的类加载器的类名称空间上
  • 如果数组的组件类型不是引用类型(例如 int[] 数组的组件类型为 int),Java虚拟机将会把数组 C 标记为与启动类加载器关联
  • 数组类的可访问性与它的组件类型的可访问性一致,如果组件类型不是引用类型,它的数组类的可访问性将默认为 public,可被所有的类和接口访问到

加载阶段结束后,Java虚拟机外部的二进制字节流就按照虚拟机所设定的格式存储在方法区之中了,方法区中的数据存储格式完全由虚拟机实现自行定义,《Java虚拟机规范》未规定此区域的具体数据结构。类型数据妥善安置在方法区之后,会在Java堆内存中实例化一个 java.lang.Class 类的对象,这个对象将作为程序访问方法区中的类型数据的外部接口。

加载阶段与连接阶段的部分动作(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的一部分,这两个阶段的开始时间仍然保持着固定的先后顺序。

验证

验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。

Java语言本身是相对安全的编程语言,使用纯粹的Java代码无法做到诸如访问数组边界以外的数据、将一个对象转型为它并未实现的类型、跳转到不存在的代码行之类的事情,如果尝试这样去做了,编译器会抛出异常、拒绝编译。但前面也曾说过,Class文件并不一定只能由Java源码编译而来,它可以使用包括靠键盘0和1直接在二进制编辑器中敲出Class文件在内的任何途径产生。上述Java代码无法做到的事情在字节码层面上都是可以实现的,至少语义上是可以表达出来的。
Java虚拟机如果不检查输入的字节流,对齐完全信任的话,很可能会因为载入了有错误或有恶意企图的字节码流而导致整个系统受攻击甚至崩溃,所以验证字节码是Java虚拟机保护自身的一项必要措施。

验证阶段是非常重要的,这个阶段是否严谨,直接决定了Java虚拟机是否能承受恶意代码的攻击,从代码量和耗费的执行性能的角度上讲,验证阶段的工作量在虚拟机的类加载过程中占了相当大的比重。
从整体上看,验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证、元数据验证、字节码验证和符号引用验证。

1. 文件格式验证

第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。

该验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段的验证之后,这段字节流才被允许进入Java虚拟机内存的方法区中进行存储,所以后面的三个验证阶段全部是基于方法区的存储结构上进行的,不会再直接读取、操作字节流了。

2. 元数据验证

第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合《Java语言规范》的要求。

第二阶段的主要目的是对雷德元数据信息进行语义校验,保证不存在与《Java语言规范》定义相悖的元数据信息。

3. 字节码验证

第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型校验完毕以后,这阶段就要对类的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为。

4. 符号引用验证

最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。

准备

准备阶段是正式为类中定义的变量(即静态变量)分配内存并设置类变量初始值的阶段,从概念上讲,这些变量所使用的内存都应当在方法区中进行分配,但必须注意到方法区本身是一个逻辑上的区域,在JDK 7之前,HotSpot使用永久代来实现方法区时,实现是完全符合这种逻辑概念的;而在JDK 7及之后,类变量则会随着Class对象一起存放在Java堆中,这时候 “类变量在方法区” 就完全是一种对逻辑概念的表述了。

关于准备阶段,还有两个容易产生混淆的概念需要着重强调,首先是这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次是这里所说的初始值 “通常情况” 下是数据类型的零值。

上面提到在 “通常情况” 下初始值是零值,那言外之意是相对的会有某些 “特殊情况” :如果类字段的字段属性表中存在 ConstantValue 属性,那在准备阶段变量值就会被初始化为 ConstantValue 属性所指定的初始值。

解析

解析阶段是Java虚拟机将常量池内的符号引用替换为直接引用的过程,在Class文件中符号引用以 CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info 等类型的常量出现。

  • 符号引用:符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定是已经加载到虚拟机内存当中的内容。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在《Java虚拟机规范》的Class文件格式中。
  • 直接引用:直接引用是可以直接指向目标的指针、相对偏移量或者是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局直接相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在虚拟机的内存中存在。

《Java虚拟机规范》之中并未规定解析阶段发生的具体时间,只要求了在执行 anewarray、checkcast、getfield、getstatic、instanceof、invokedynamic、invokeinterface、invokespecial、invokestatic、invokevirtual、ldc、ldc_w、ldc2_w、multianewarray、new、putfield 和 pustatic 这17个用于操作符号引用的字节码指令之前,
先对它们所使用的符号引用进行解析。所以虚拟机实现可以根据需要来自行判断,到底是在类被加载器加载时就对常量池中的符号引用进行解析,还是等到一个符号引用将要被使用前才去解析它。

类似地,对方法或者字段的访问,也会在解析阶段中对它们的可访问性进行检查。

对同一个符号引用进行多次解析请求是很常见的事情,除 invokedynamic 指令之外,虚拟机实现可以对第一次解析的结果进行缓存,譬如在运行时直接引用常量池中的记录,并把常量标识为已解析状态,从而避免解析动作重复进行。无论是否真正执行了多次解析动作,Java虚拟机都需要保证的是在同一个实体中,如果一个符号引用之前已经被成功解析过,那么后续的引用解析请求就应当一直能够成功;同样地,如果第一次解析失败了,其他指令对这个符号的解析请求也应该收到相同的异常,哪怕这个请求的符号在后来已成功加载进Java虚拟机内存之中。

……

初始化

类的初始化阶段是类加载过程的最后一个步骤。直到初始化阶段,Java虚拟机才真正开始执行类中编写的Java程序代码。

进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段,则会根据通过程序编码指定的主观计划去初始化类变量和其他资源。也可以从另外一种更直接的形式来表达:初始化阶段就是执行类构造器 <clinit>() 方法的过程。<clinit>() 并不是在Java代码中直接编写的方法,它是Javac编译器的自动生成物。

  • <clinit>() 方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{} 块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问。
  • <clinit>() 方法与类的构造函数(即在虚拟机视角中的实例构造器 <init>() 方法)不同,它不需要显式调用父类构造器,Java虚拟机会保证在子类的 <clinit>() 方法执行前,父类的 <clinit>() 方法已经执行完毕。
  • 由于父类的 <clinit>() 方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作。
  • <clinit>() 方法对于类或接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成 <clinit>() 方法。
  • 接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成 <clinit>() 方法。但接口与类不同的是,执行接口的 <clinit>() 方法不需要先执行父接口的 <clinit>() 方法,因为只有当父接口中定义的变量被使用时,父接口才会被初始化。此外,接口的实现类在初始化时也一样不会执行接口的 <clinit>() 方法。
  • Java虚拟机必须保证一个类的 <clinit>() 方法在多线程环境中被正确地加锁同步,如果多个线程同时去初始化一个类,那么只会有其中一个线程去执行这个类的 <clinit>() 方法,其他线程都需要阻塞等待,直到活动线程执行完毕 <clinit>() 方法。

类加载器

Java虚拟机设计团队有意把类加载阶段中的 “通过一个类的全限定名来获取描述该类的二进制字节流” 这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类。实现这个动作的代码被称为 “类加载器” 。

类与类加载器

对于任何一个类,都必须由加载它的类加载器和这个类本身一起共同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。通俗一点说:比较两个类是否 “相等” ,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个Java虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。

这里所指的 “相等”,包括代表类的Class对象的 equals() 方法、isAssignableFrom() 方法、isInstance() 方法的返回结果,也包括了使用 instanceof 关键字做对象所属关系判定等各种情况。

双亲委派模型

站在Java虚拟机的角度来看,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),这个类加载器使用C++语言实现,是虚拟机自身的一部分;另一种就是其他所有的类加载器,这些类加载器都有Java语言实现,独立存在于虚拟机外部,并且全部继承自抽象类 java.lang.ClassLoader。

站在Java开发人员的角度来看,类加载器就应当划分得更细致一些。自JDK 1.2以来,Java一直保持着三层类加载器、双亲委派的类加载结构,尽管这套架构在Java模块化系统出现后有了一些调整变动,但依然未改变其主体结构。

对于 JDK 8 及之前版本的Java应用,绝大多数Java程序都会使用到以下 3 个系统提供的类加载器来进行加载。

  • 启动类加载器(Bootstrap ClassLoader):这个类加载器负责加载存放在 \lib 目录,或者被 -Xbootclasspath 参数所指定的路径中存放的,而且是Java虚拟机能够识别的类库加载到虚拟机的内存中。启动类加载器无法被Java程序直接引用,在编写自定义类加载器时,如果需要把加载请求委派给启动类加载器去处理,直接使用 null 代替即可。
  • 扩展类加载器:这个类加载器是在类 sum.misc.Launcher$ExtClassLoader 中以Java代码形式实现的。它负责加载 \lib\ext 目录中,或者被 java.ext.dirs 系统变量所指定的路径中所有的类库。由于扩展类加载器是由Java代码实现的,开发者可以直接在程序中使用扩展类加载器来加载Class文件。
  • 应用程序类加载器:这个类加载器由 sum.misc.Launcher$AppClassLoader 来实现。由于应用程序类加载器是 ClassLoader 类中的 getSystemClassLoader() 方法的返回值,所以有些场合中也称它为 “系统类加载器”。它负责加载用户类路径(ClassPath)上所有的类库。如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

JDK 9之前的Java应用都是由这三种类加载器互相配合来完成加载的,如果用户认为有必要,还可以加入自定义的类加载器来进行拓展。

双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应有自己的父类加载器。这里类加载器之间的父子关系一般不是以继承的关系来实现的,而是通常使用组合关系来复用父类加载器的代码。

类加载器的双亲委派模型在 JDK 1.2时期被引入,并被广泛应用于此后几乎所有的Java程序中,但它并不是一个具有强制性约束力的模型,而是Java设计者们推荐给开发者的一种类加载器实现的最佳实践。

双亲委派模型的工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父类加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子类加载器才会尝试自己去完成加载。

使用双亲委派模型来组织类加载器之间的关系,一个显而易见的好处就是Java中的类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类 java.lang.Object,它存放在 rt.jar 之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此 Object 类在程序的各个类加载器环境中都能够保证是同一个类。

用以实现双新委派模型的代码全部集中在 java.lang.ClassLoader 的 loadClass() 方法中。

评论