线程的实现
线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源(内存地址、文件I/O等),又可以独立调度。
目前线程是Java里面进行处理器资源调度的最基本单位。
主流的操作系统都提供了线程实现,Java语言则提供了在不同硬件和操作系统平台下对线程操作的统一处理,每个已经调用过 start() 方法且还未结束的 java.lang.Thread 类的实例就代表着一个线程。
实现线程主要有三种方式:使用内核线程实现(1:1实现),使用用户线程实现(1:N实现),使用用户线程加轻量级进程混合实现(N:M实现)。
1. 内核线程实现
使用内核线程实现的方式也被称为1:1实现。内核线程(KLT)就是直接由操作系统内核支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器对线程进行调度,并负责将线程的任务映射到各个处理器上。
每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就称为多线程内核。
程序一般不会直接使用内核线程,而是使用内核线程的一种高级接口——轻量级进程(LWP),轻量级进程就是通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。这种轻量级进程与内核线程之间1:1的关系称为一对一的线程模型。
由于内核线程的支持,每个轻量级进程都成为一个独立的调度单元,即使其中某一个轻量级进程在系统调用中被阻塞了,也不会影响整个进程继续工作。轻量级进程也具有它的局限性:首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。
而系统调用的代价相对较高,需要在用户态和内核态中来回切换。其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的。
2. 用户线程实现
使用用户线程实现的方式被称为1:N实现。广义上来讲,一个线程只要不是内核线程,都可以认为是用户线程(UT)的一种,因此从这个定义上看,轻量级进程也属于用户线程,但轻量级进程的实现始终是建立在内核之上的,许多操作都要进行系统调用,因此效率会受到限制,并不具备通常意义上的用户线程的优点。
而狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知到用户线程的存在及如何实现的。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也能够支持规模更大的线程数量。
用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要由用户程序自己去处理。线程的创建、销毁、切换和调度都是用户必须考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如 “阻塞如何处理” “多处理器系统中如何将线程映射到其他处理器上” 这类问题解决起来将会异常困难,甚至有些是不可能实现的。
3. 混合实现
还有一种将内核线程与用户线程一起使用的实现方式,被称为N:M实现。在这种混合实现下,既存在用户线程,也存在轻量级进程。用户进程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。而操作系统支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,
并且用户线程的系统调用要通过轻量级进程来完成,这大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,是N:M的关系。
4. Java线程的实现
Java线程如何实现并不受Java虚拟机规范的约束,这是一个与具体虚拟机相关的话题。从 JDK 1.3 起,“主流” 平台上的 “主流” 商用Java虚拟机的线程模型普遍都被替换为基于操作系统原生线程模型来实现,即采用1:1的线程模型。
以 HotSpot 为例,它的每一个Java线程都是直接映射到一个操作系统原生线程来实现的,而且中间没有额外的间接结构,所以 HotSpot 自己是不会去干涉线程调度的,全权交给底下的操作系统去处理。
Java线程调度
线程调度是指系统为线程分配处理器使用权的过程,调度主要方式有两种,分别是协同式线程调度和抢占式线程调度。
如果使用协同式线程调度的多线程系统,线程的执行时间由线程本身来控制,线程把自己的工作执行完了之后,要主动通知系统切换到另一个线程上去。协同式多线程的最大好处是实现简单,而且由于线程要把自己的事情干完后才会进行线程切换,切换操作对线程自己是可知的,所以一般没有什么线程同步的问题。Lua语言中的“协同例程”就是这类实现。
它的坏处也很明显:线程执行时间不可控制,甚至如果一个线程的代码编写有问题,一直不告知系统进行线程切换,那么程序就会一直阻塞在那里。
如果使用抢占式调度的多线程系统,那么每个线程将由系统来分配执行时间,线程的切换不由线程本身来决定。譬如在Java中,有 Thread::yield() 方法可以主动让出执行时间,但是如果想要主动获取执行时间,线程本身是没有什么办法的。
在这种实现线程调度的方式下,线程的执行时间是系统可控的,也不会有一个线程导致整个进程甚至整个系统阻塞的问题。Java使用的线程调度方式就是抢占式调度。
虽说Java线程调度是系统自动完成的,但是仍然可以 “建议” 操作系统给某些线程多分配一点执行时间,另外的一些线程则可以少分配一点——这项操作是通过设置线程优先级来完成的。Java语言一共设置了10个级别的线程优先级。在两个线程同时处于 Ready 状态时,优先级越高的线程越容易被系统选择执行。
状态转换
Java语言定义了6种线程状态,在任意一个时间点中,一个线程只能有且只有其中的一种状态,并且可以通过特定的方法在不同状态之间切换。
- 新建(New):创建后尚未启动的线程处于这种状态。
- 运行(Runnable):包括操作系统线程状态中的 Running 和 Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着操作系统为它分配执行时间。
- 无限期等待(Waiting):处于这种状态的线程不会被分配处理器执行时间,它们要等待被其他线程显式唤醒。以下方法会让线程陷入无限期的等待状态:
- 没有设置 Timeout 参数的 Object::wait() 方法
- 没有设置 Timeout 参数的 Thread::join() 方法
- LockSupport::park() 方法
- 限期等待(Timed Waiting):处于这种状态的线程也不会被分配处理器执行时间,不过无须等待被其他线程显式唤醒,在一定时间之后它们会由系统自动唤醒。以下方法会让线程陷入限期的等待状态:
- Thread::sleep() 方法
- 设置了 Timeout 参数的 Object::wait() 方法
- 设置了 Timeout 参数的 Thread::join() 方法
- LockSupport::parkNanos() 方法
- LockSupport::parkUntil() 方法
- 阻塞(Blocked):线程被阻塞了,“阻塞状态” 与 “等待状态” 的区别是 “阻塞状态” 在等待着获取到一个排他锁,这个事件将在另一个线程放弃这个锁的时候发生;而 “等待状态” 则是在等待一段时间,或者唤醒动作的发生。在程序等待进入同步区域的时候,线程将进入这种状态。
- 结束(Terminated):已终止线程的线程状态,线程已经结束执行。
Java 与 协程
内核线程的局限
今天对Web应用的服务要求,不论是在请求数量上还是在复杂度上,与十多年前相比已不可同日而语,这一方面是源于业务量的增长,另一方面来自于为了应对业务复杂化而不断进行的服务细分。现代 B/S 系统中一次对外部业务请求的响应,往往需要分布在不同机器上的大量服务共同协作来实现,这种服务细分的架构在减少单个服务复杂度、增加复用性的同时,也不可避免地增加了服务的数量,缩短了留给每个服务的响应时间。
这要求每一个服务都必须在极短的时间内完成计算,这样组合多个服务的总耗时才不会太长;也要求每一个服务提供者都要能同时处理数量更庞大的请求,这样才不会出现请求由于某个服务被阻塞而出现等待。
Java目前的并发编程机制就与上述架构趋势产生了一些矛盾,1:1 的内核线程模型是如今Java虚拟机线程实现的主流选择,但是这种映射到操作系统上的线程天然的缺陷是切换、调度成本高昂,系统能容纳的线程数量也很有限。在以前的单体应用中,处理每一个请求可以允许花费很长时间,具有这种线程切换的成本也是无伤大雅的,但现在在每个请求本身的执行时间变得更短、数量变得更多的前提下,用户线程切换的开销甚至可能会接近用于计算本身的开销,这就会造成严重的浪费。
传统的Java Web服务器的线程池的容量通常在几十个到两百之间,当程序员把数以百万计的请求往线程池里面灌时,系统即使能处理得过来,但其中的切换损耗也是相当可观的。现实的需求在迫使Java去研究新的解决方案。
协程的复苏
为什么内核线程调度切换起来成本会更高?
内核线程的调度成本主要来自于用户态与核心态之间的状态转换,而这两种状态转换的开销主要来自于响应中断、保护和恢复执行现场的成本。假设发生了这样一次线程切换:
1 | 线程A -> 系统中断 -> 线程B |
处理器要去执行线程A的程序代码时,并不是仅有代码程序就能跑得起来,程序是数据与代码的组合体,代码执行时还必须要有上下文数据的支撑。而这里说的 “上下文”,以程序员的角度来看,是方法调用过程中的各种局部的变量与资源;以线程的角度来看,是方法的调用栈中存储的各类信息;而以操作系统和硬件的角度来看,则是存储在内存、缓存和寄存器中的一个个具体数值。
物理硬件的各种存储设备和寄存器是被操作系统内所有线程共享的资源,当中断发生,从线程A切换到线程B去执行之前,操作系统首先要把线程A的上下文数据妥善保管好,然后把寄存器、内存分页等恢复到线程B挂起时候的状态,这样线程B被重新激活后才能仿佛从来没有被挂起过。这种保护和恢复现场的工作,免不了涉及一系列数据在各种寄存器、缓存中的来回拷贝,当然不可能是一种轻量级操作。
如果说内核线程的切换开销是来自于保护和恢复现场的成本,那如果改为采用用户线程,这部分开销就能够省略掉吗?答案是 “不能”。但是,一旦把保护、恢复现场及调度的工作从操作系统交到程序员手上,那就可以打开脑洞,通过玩出很多新花样来缩减这些开销。
有一些古老的操作系统是单人单工作业形式的,天生就不支持多线程,自然也不会有多个调用栈这样的基础设施。而早在那样的蛮荒时代,就已经出现了今天被称为 栈纠缠 的、由用户自己模拟多线程、自己保护恢复现场的工作模式。其大致的原理是通过在内存里划出一片额外空间来模拟调用栈,只要其他“线程”中方法压栈、退栈时遵守规则,不破坏这片空间即可,这样多段代码执行时就会像相互缠绕着一样,非常形象。
到后来,操作系统开始提供多线程的支持,靠应用自己模拟多线程的做法自然是变少了许多,但也没有完全消失,而是演化为用户线程继续存在。由于最初多数的用户线程是被设计成协同式调度的,所以它有了一个别名——“协程”。又由于这时候的协程会完整地做调用栈的保护、恢复工作,所以今天也被称为“有栈协程”,起这样的名字是为了便于跟后来的“无栈协程”区分开。无栈协程不是本节的主角,不过还是可以简单提一下它的典型应用,即各种语言中的await、async、yield这类关键字,无栈协程本质上是一种有限状态机,状态保护在闭包里,自然比有栈协程恢复调用栈要轻量得多,但功能也相对更有限。
协程的主要优势是轻量,无论是有栈协程还是无栈协程,都要比传统内核线程要轻量得多,如果进行量化的话,那么如果不显式设置 -Xss 或 -XX:ThreadStackSize,则在64位Linux上HotSpot的线程栈容量默认是1MB,此外内核数据结构还会额外消耗16KB内存。与之相对的,一个协程的栈通常在几百个字节到几KB之间,所以Java虚拟机里线程池容量达到两百就已经不算小了,而很多支持协程的应用中,同时并存的协程数量可数以十万计。
协程当然也有它的局限,需要在应用层面实现的内容(调用栈、调度器这些)特别多。除此之外,协程在最初,甚至在今天很多语言和框架中会被设计成协同式调度,这样在语言运行平台或者框架上的调度器就可以做得非常简单。
具体到Java语言,还会有一些别的限制,譬如HotSpot这样的虚拟机,Java调用栈跟本地调用栈是做在一起的。如果在协程中调用了本地方法,还能否正常切换协程而不影响整个线程?另外,如果协程中遇传统的线程同步措施会怎样?譬如Kotlin提供的协程实现,一旦遭遇 synchronized 关键字,那挂起来的仍将是整个线程。
Java的解决方案
OpenJDK 在2018年创建了Loom项目,这是Java用来应对本节开篇所列场景的官方解决方案,根据目前公开的信息,如无意外,日后该项目为Java语言引入的、与现在线程模型平行的新并发编程机制中应该会采用 “纤程” 这个名字。从 Oracle 官方对 “什么是纤程” 的解释里可以看出,它就是一种典型的有栈协程。
Loom项目背后的意图是重新提供对用户线程的支持,但与过去的绿色线程不同,这些新功能不是为了取代当前基于操作系统的线程实现,而是会有两个并发编程模型在Java虚拟机中并存,可以在程序中同时使用。
在新并发模型下,一段使用纤程并发的代码会被分为两部分——执行过程和调度器。执行过程主要用于维护执行现场,保护、恢复上下文状态,而调度器则负责编排所有要执行的代码的顺序。将调度程序与执行过程分离的好处是,用户可以选择自行控制其中的一个或者多个,而且Java中现有的调度器也可以被直接重用。