privatestaticvoidprepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { thrownewRuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(newLooper(quitAllowed)); }
publicstaticvoidloop() { finalLooperme= myLooper(); if (me == null) { thrownewRuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } if (me.mInLoop) { Slog.w(TAG, "Loop again would have the queued messages be executed" + " before this one completed."); }
me.mInLoop = true;
// Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); finallongident= Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g. // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start' finalintthresholdOverride= SystemProperties.getInt("log.looper." + Process.myUid() + "." + Thread.currentThread().getName() + ".slow", 0);
me.mSlowDeliveryDetected = false;
for (;;) { if (!loopOnce(me, ident, thresholdOverride)) { return; } } }
privatestaticbooleanloopOnce(final Looper me, finallong ident, finalint thresholdOverride) { Messagemsg= me.mQueue.next(); // 这里会一直阻塞线程,直到收到消息。否则,直接返回 null 就会结束循环 if (msg == null) { // No message indicates that the message queue is quitting. returnfalse; }
// This must be in a local variable, in case a UI event sets the logger finalPrinterlogging= me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } // Make sure the observer won't change while processing a transaction. finalObserverobserver= sObserver;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); }
finallongdispatchStart= needStartTime ? SystemClock.uptimeMillis() : 0; finallong dispatchEnd; Objecttoken=null; if (observer != null) { token = observer.messageDispatchStarting(); } longorigWorkSource= ThreadLocalWorkSource.setUid(msg.workSourceUid); try { msg.target.dispatchMessage(msg); // 把 msg 交由 发送方 Handler 处理 if (observer != null) { observer.messageDispatched(token, msg); } dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0; } catch (Exception exception) { if (observer != null) { observer.dispatchingThrewException(token, msg, exception); } throw exception; } finally { ThreadLocalWorkSource.restore(origWorkSource); if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logSlowDelivery) { if (me.mSlowDeliveryDetected) { if ((dispatchStart - msg.when) <= 10) { Slog.w(TAG, "Drained"); me.mSlowDeliveryDetected = false; } } else { if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery", msg)) { // Once we write a slow delivery log, suppress until the queue drains. me.mSlowDeliveryDetected = true; } } } if (logSlowDispatch) { showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg); }
if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); }
// Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. finallongnewIdent= Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); }
// The main looper for your application is created by the Android environment, so you should never need to call this function yourself. @Deprecated publicstaticvoidprepareMainLooper() { prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { thrownewIllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } }
// Run the idle handlers. // We only ever reach this code block during the first iteration. for (inti=0; i < pendingIdleHandlerCount; i++) { finalIdleHandleridler= mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler
A Message is added to the queue for example in response to input events, as frame rendering callback or even your own Handler.post calls.
Sometimes the main thread has no work to do (that is, no messages in the queue), which may happen e.g. just after finishing rendering single frame (the thread has just drawn one frame and is ready for the next one, just waits for a proper time).
Two Java methods in the MessageQueue class are interesting to us: Message next() and boolean enqueueMessage(Message, long). Message next(), as its name suggest, takes and returns the next Message from the queue. If the queue is empty (and there’s nothing to return), the method calls native void nativePollOnce(long, int) which blocks until a new message is added. At this point you might ask how does nativePollOnce know when to wake up. That’s a very good question.
When a Message is added to the queue, the framework calls the enqueueMessage method, which not only inserts the message into the queue, but also calls native static void nativeWake(long), if there’s need to wake up the queue.
The core magic of nativePollOnce and nativeWake happens in the native (actually, C++) code. Native MessageQueue utilizes a Linux system call named epoll, which allows to monitor a file descriptor for IO events.
nativePollOnce calls epoll_wait on a certain file descriptor, whereas nativeWake writes to the descriptor, which is one of the IO operations, epoll_wait waits for. The kernel then takes out the epoll-waiting thread from the waiting state and the thread proceeds with handling the new message.
If you’re familiar with Java’s Object.wait() and Object.notify() methods, you can imagine that nativePollOnce is a rough equivalent for Object.wait() and nativeWake for Object.notify(), except they’re implemented completely differently: nativePollOnce uses epoll and Object.wait() uses futex Linux call.
It’s worth noticing that neither nativePollOnce nor Object.wait() waste CPU cycles, as when a thread enters either method, it becomes disabled for thread scheduling purposes (quoting the javadoc for the Object class). However, some profilers may mistakenly recognize epoll-waiting (or even Object-waiting) threads as running and consuming CPU time, which is incorrect. If those methods actually wasted CPU cycles, all idle apps would use 100% of the CPU, heating and slowing down the device.
booleanenqueueMessage(Message msg, long when) { if (msg.target == null) { thrownewIllegalArgumentException("Message must have a target."); }
synchronized (this) { if (msg.isInUse()) { thrownewIllegalStateException(msg + " This message is already in use."); }
if (mQuitting) { IllegalStateExceptione=newIllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); returnfalse; }
msg.markInUse(); msg.when = when; // 设置 Message 的 when Messagep= mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // 如果队列被阻塞,就唤醒队列 msg.next = p; mMessages = msg; needWake = mBlocked; } else { // 插入队列中间。 通常我们不必唤醒事件队列,除非队列头部有屏障并且消息是队列中最早的异步消息。 needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; }
// We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); // 唤醒队列获取消息 } } returntrue; }
privateintpostSyncBarrier(long when) { // Enqueue a new sync barrier token. // We don't need to wake the queue because the purpose of a barrier is to stall it. synchronized (this) { finalinttoken= mNextBarrierToken++; finalMessagemsg= Message.obtain(); msg.markInUse(); msg.when = when; msg.arg1 = token;
publicHandler(@Nullable Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extendsHandler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } }
mLooper = Looper.myLooper(); if (mLooper == null) { thrownewRuntimeException( "Can't create handler inside thread " + Thread.currentThread() + " that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }